Neurobiology of Disease The Neural Code of Auditory Phantom Perception
نویسندگان
چکیده
Tinnitus is defined by an auditory perception in the absence of an external source of sound. This condition provides the distinctive possibility of extracting neural coding of perceptual representation. Previously, we had established that tinnitus is characterized by enhanced magnetic slow-wave activity ( 4 Hz) in perisylvian or putatively auditory regions. Because of works linking high-frequency oscillations to conscious sensory perception and positive symptoms in a variety of disorders, we examined gamma band activity during brief periods of marked enhancement of slow-wave activity. These periods were extracted from 5 min of resting spontaneous magnetoencephalography activity in 26 tinnitus and 21 control subjects. Results revealed the following, particularly within a frequency range of 50 – 60 Hz: (1) Both groups showed significant increases in gamma band activity after onset of slow waves. (2) Gamma is more prominent in tinnitus subjects than in controls. (3) Activity at 55 Hz determines the laterality of the tinnitus perception. Based on present and previous results, we have concluded that cochlear damage, or similar types of deafferentation from peripheral input, triggers reorganization in the central auditory system. This produces permanent alterations in the ongoing oscillatory dynamics at the higher layers of the auditory hierarchical stream. The change results in enhanced slow-wave activity reflecting altered corticothalamic and corticolimbic interplay. Such enhancement facilitates and sustains gamma activity as a neural code of phantom perception, in this case auditory.
منابع مشابه
The neural code of auditory phantom perception.
Tinnitus is defined by an auditory perception in the absence of an external source of sound. This condition provides the distinctive possibility of extracting neural coding of perceptual representation. Previously, we had established that tinnitus is characterized by enhanced magnetic slow-wave activity (approximately 4 Hz) in perisylvian or putatively auditory regions. Because of works linking...
متن کاملسایکوآکوستیک و درک گفتار در افراد مبتلا به نوروپاتی شنوایی و افراد طبیعی
Background: The main result of hearing impairment is reduction of speech perception. Patient with auditory neuropathy can hear but they can not understand. Their difficulties have been traced to timing related deficits, revealing the importance of the neural encoding of timing cues for understanding speech. Objective: In the present study psychoacoustic perception (minimal noticeable differen...
متن کاملBehind the scenes of auditory perception.
'Auditory scenes' often contain contributions from multiple acoustic sources. These are usually heard as separate auditory 'streams', which can be selectively followed over time. How and where these auditory streams are formed in the auditory system is one of the most fascinating questions facing auditory scientists today. Findings published within the past two years indicate that both cortical...
متن کاملThe auditory behaviour of primates: a neuroethological perspective.
The ethological approach has already provided rich insights into the auditory neurobiology of a number of different taxa (e.g. birds, frogs and insects). Understanding the ethology of primates is likely to yield similar insights into the specializations of this taxa's auditory system for processing species-specific vocalisations. Here, we review the recent advances made in our understanding of ...
متن کاملComparison of Auditory Perception in Cochlear Implanted Children with and without Additional Disabilities
Background: The number of children with cochlear implants who have other difficulties such as attention deficiency and cerebral palsy has increased dramatically. Despite the need for information on the results of cochlear implantation in this group, the available literature is extremely limited. We, therefore, sought to compare the levels of auditory perception in children with cochlear implant...
متن کامل